

NATIONAL ENERGY TECHNOLOGY LABORATORY

Cost Reduction and R&D Strategies for Advanced Oxyfuel Technologies

2010 NETL CO₂ Capture Technology Meeting September 15, 2010

Michael Matuszewski
Office of Systems, Analyses & Planning – Systems Division

Objectives

- Guide R&D by Exploring Advanced Concepts in Oxyfuel (OF) Technology
 - 1. ITM w/Optimized Heat Integration
 - 2. USC Steam Conditions (4,000psig/1,350°F/1,400°F)
 - 3. Co-Sequestration + Advanced Materials for Hi-S Recycle
 - 4. Advanced Shock Compression + Heat Integration
 - 5. Oxyfuel-Specific Boiler (+500°F, ↑ heat transfer, ↓ surface area 35%)
- Assess Potential of Individual Technologies for Cost-Effectively Reducing Anthropogenic CO₂ Emissions from Power Plants
 - ≥90% Carbon Capture
 - ≤30% Increase in Cost of Electricity over State of the Art (SOA) Air-fired
 PC Plant w/o Capture (Case 11 of NETL study below)
 - Link: http://www.netl.doe.gov/energy-analyses/pubs/Bituminous%20Baseline_Final%20Report.pdf
- Evaluate the Benefits of Combining Multiple Advanced OF Technologies into One Plant

Executive Summary

- Incorporating the five advanced technologies into one plant may boost SOA OF system efficiency by <u>over 10%</u> <u>points</u>
- The cumulative savings in Cost of Electricity (COE) over a SOA OF system may be <u>~20% or ~\$26/MWh.</u>
- Cost of Avoided CO₂ may decrease by <u>58% or ~\$29/ton.</u>
- Cost of Electricity Increases by 30% over Base Air-Fired Case w/o Capture – Pathway to NETL Goal!

Systems Analyses

Engineering Studies and Extensive Process Simulation (ASPEN)

- All major processes and equipment based on vendor input
- Detailed mass and energy balances
- Performance calculations (auxiliary power, gross/net power output)

Study Outline

- Performed seven techno-economic system studies to evaluate five advanced technologies
 - Base Case (State of the Art Oxyfuel)
 - 2. ITM w/Optimized Heat Integration
 - 3. USC Steam Conditions
 - 4. Co-Sequestration + Advanced Materials for Hi-S Recycle
 - 5. Advanced Shock Compression
 - 6. Oxyfuel-Specific Boiler
 - 7. Cumulative Case (Incorporating technologies in 2-6)

Capital and Operating Costs Scaled from Previous Studies

Study Results

Plant LCOE Reductions

Plant Efficiency Improvements

Cost of Avoided CO₂

Pathway to Meeting NETL Goals

Percent Increases in COE over SOA PC Plant w/o Capture

Time to Commercialization

Conclusions

- The five advanced technologies studied have great potential to pave the way to achieving NETL goals of 90% capture at ≤30% increase in cost of electricity
- Preliminary results show that with successful R&D, OF technologies can capture 90% CO₂ with ~30% increase in COE
- However, R&D success hinges on great strides in:
 - Oxygen Supply: ITM system integration, performance and capital cost reduction.
 - Sulfur-Tolerant Materials: Sulfur-tolerant materials enabling cosequestration.
 - Oxycombustion Boilers: Smaller, better performing oxycombustionbased boiler designs.
 - Advanced Steam Conditions: More aggressive Rankine cycles also increase performance of oxycombustion.

Ongoing Work

NETL is performing or funding research in all of these key areas.
 For more details, visit:

http://www.netl.doe.gov/technologies/coalpower/ewr/co2/OxyCombustion.html

Additional Information

Expected Posting:

October, 2010

www.netl.doe.gov

Advancing Oxycombustion Technology for Bituminous Coal Power Plants: An R&D Guide

August 2010

FINAL REPORT

DOE/NETL-2010/1405

Any Questions?